

AFRL-IF-RS-TR-2003-212
Final Technical Report
September 2003

CONFIGURING EMBEDDABLE ADAPTIVE
COMPUTING SYSTEMS FOR MULTIPLE
APPLICATION DOMAINS WITH MINIMAL SIZE,
WEIGHT, AND POWER

Texas Tech University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F297, J468

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-212 has been reviewed and is approved for publication.

APPROVED: /s/
 JULES BERGMANN
 Project Engineer

 FOR THE DIRECTOR: /s/
 EUGENE C. BLACKBURN, Chief
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
SEPTEMBER 2003

3. REPORT TYPE AND DATES COVERED
Final Jul 97 – Oct 01

4. TITLE AND SUBTITLE
CONFIGURING EMBEDDABLE ADAPTIVE COMPUTING SYSTEMS FOR
MULTIPLE APPLICATION DOMAINS WITH MINIMAL SIZE, WEIGHT, AND
POWER

6. AUTHOR(S)
John K. Antonio

5. FUNDING NUMBERS
C - F30602-97-2-0297
PE - 62301E
PR - D002
TA - 02
WU - P6

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Texas Tech University
203 Holden Hall
Lubbock TX 79409-1035

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFTC
3701 North Fairfax Drive 26 Electronic Parkway
Arlington Virginia 22203-1714 Rome New York 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-212

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Jules P. Bergmann/IFTC/(315) 330-2244/ Jules.Bergmann@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The advantages of using DSP chips for high-performance embedded signal processing applications have been
demonstrated during the past decade. However, it is now apparent that even DSP chips can be overkill for some
computations found in common embedded military applications. This project investigates the advantages of integrating
configurable hardware together with a multiprocessor DSP/GPP platform. The computational engine of the configurable
hardware used in this project was comprised of FPGA chips. A primary goal of our project was to demonstrate that for
given computational loads--associated with instances of embedded radar signal processing applications—the total size,
weight, and power (SWAP) could be reduced by integrating FPGA-based components as part of the embedded
computational platform.

15. NUMBER OF PAGES
142

14. SUBJECT TERMS
Digital Signal Processing, Hybrid Computer Architecture, Embedded Systems, Field Programmable
Gate Arrays, Radar Signal Processing Size, Weight, and Power Optimization 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

Introduction .. 1
Organizational Structure of the Report .. 1
Project Overview .. 2
Brief Descriptions of Major Parts of the Report .. 3

Part 1: Optimal Multiprocessor Configuration for SAR .. 5
Overview of References [1A], [2B], and [3].. 5

Part 2: Optimal Communication Scheduling for STAP ... 9
Overview of References [4C], [5D], [6E], [7], and [8] .. 9

Part 3: FPGA Power Prediction and Applications ... 12
3.1 FPGA Power Prediction ... 12
Overview of References [9F] and [10] .. 12
Overview of Reference [11G]... 14
3.2 FPGA Applications .. 14
Overview of References [12H] and [13] .. 14
Overview of Reference [14] ... 15
Overview of Reference [15I] .. 16
Overview of References [16J] and [17] ... 18

Part 4: Hybrid FPGA/DSP/GPP Platform .. 19
Overview of Reference [18K] ... 19

Conclusion.. 33
Technology Transfer... 33
Deliverables.. 33

References .. 35
Additional Materials... 38
Technical Report .. 38
Appendix A: Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of an Embedded Parallel
System for Synthetic Aperture Radar Processing,” Proceedings of the International Conference on Signal
Processing Applications & Technology, Boston, MA, Oct. 1996, pp. 1489-1494....................................... 40
Appendix B: Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of Compute Nodes for
Synthetic Aperture Radar Processing,” Proceedings of the International Workshop on Embedded HPC
Systems and Applications (EHPC ‘98), in Lecture Notes in Computer Science 1388: Parallel and
Distributed Processing, edited by Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL, USA, Apr.
1998, pp. 987-993. ... 47
Appendix C: Jack M. West and John K. Antonio, “Simulation of the Communication Time for a Space-
Time Adaptive Processing Algorithm on a Parallel Embedded System,” Proceedings of the International
Workshop on Embedded HPC Systems and Applications (EHPC ‘98), in Lecture Notes in Computer
Science 1388: Parallel and Distributed Processing, edited by Jose Rolim, sponsor: IEEE Computer
Society, Orlando, FL, USA, Apr. 1998, pp. 979-986... 55
Appendix D: Jack M. West and John K. Antonio, “A Genetic Algorithm Approach to Scheduling
Communications for a Class of Parallel Space-Time Adaptive Processing Algorithms,” Proceedings of the
5th International Workshop on Embedded/Distributed HPC Systems and Applications (EHPC 2000), in
Lecture Notes in Computer Science, IPDPS 2000 Workshops, sponsor: IEEE Computer Society, Cancun,
Mexico, May 2000, pp. 855-861. ... 64
Appendix E: Jack M. West and John K. Antonio, “A Genetic-Algorithm Approach to Scheduling
Communications for Embedded Parallel Space-Time Adaptive Processing Algorithms,” Journal of Parallel
and Distributed Computing, Vol. 62, No. 9, Sept. 2002, pp. 1386-1406... 72
Appendix F: Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West, Hongping Li, Sirirut
Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K. Dhall, “A Probabilistic Power
Prediction Tool for the Xilinx 4000-Series FPGA,” Proceedings of the 5th International Workshop on

ii

Embedded/Distributed HPC Systems and Applications (EHPC 2000), in Lecture Notes in Computer
Science, IPDPS 2000 Workshops, sponsor: IEEE Computer Society, Cancun, Mexico, May 2000, pp. 776-
783.. 94
Appendix G: Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise Power Prediction
for Combinational Circuits,” Proceedings of the IEEE Symposium on VLSI, sponsor: IEEE, Tampa, FL,
Feb 2003, pp. 254-259. .. 103
Appendix H: Nikhil D. Gupta, John K. Antonio, and Jack M. West, “Reconfigurable Computing for Space-
Time Adaptive Processing” Proceedings of the Sixth Annual IEEE Symposium on Field Programmable
Custom Computing Machines (FCCM), Napa, CA, USA, Apr. 1998, pp. 335-336. 110
Appendix I: Jeffrey T. Muehring and John K. Antonio, “Minimizing Power Consumption using Signal
Activity Transformations for Very Deep FPGA Pipelines,” Proceedings of the Military and Aerospace
Applications for Programmable Devices and Technologies Conference (MAPLD 2000), sponsors: NASA
and Johns Hopkins University/Applied Physics Laboratory, Laurel, MD, Sep. 2000. 113
Appendix J: S. Vanichayobon, Sudarshan K. Dhall, S. Lakshmivarahan, and John K. Antonio, “Power-
speed Trade-off in Parallel Prefix Circuits,” Proceedings of ITComm 2002, High-Performance Pervasive
Computing Conference, sponsor: SPIE, Boston, MA, July/Aug. 2002, pp. 109-120. 117
Appendix K: Jack M. West, Hongping Li, Sirirut Vanichayobon, Jeffrey T. Muehring, John K. Antonio,
and Sudarshan K. Dhall, “A Hybrid FPGA/DSP/GPP Prototype Architecture for SAR and STAP,”
Proceedings of the Fourth Annual High Performance Embedded Computing Workshop, sponsors: U.S.
Navy and Defense Advanced Research Projects Agency (DARPA), MIT Lincoln Laboratory Publications,
Group 18, Lexington, MA, Sep. 2000, pp. 29-30. ... 130

iii

List of Figures

Figure 1. Organizational structure of the report. .. 1
Figure 2. This diagram illustrates the method of performing sectioned fast convolutions

on azimuth input data with a pre-stored kernel. Given that the kernel size is fixed,
then if the section size is made large, a relatively small fraction of samples are
discarded for each section, thus making processor efficiency high. Conversely, if the
section size is small, then a relatively large fraction of samples must be discarded for
each section, resulting in poor processor efficiency, but relatively small memory
requirements. .. 6

Figure 3. Optimal CN Configurations of the CN-constrained Model [2B]. 8
Figure 4. Measured power consumption of the configuration files and data sets from [9F].

.. 14
Figure 5. Structure of the deep pipeline.. 17
Figure 6. Using activity transformations to minimize power consumption. 18
Figure 7. Block diagram of the FPGA/DSP/GPP prototype architecture........................ 20
Figure 8. Detail of the FPGA/DSP/GPP prototype architecture....................................... 21
Figure 9. Photograph of the FPGA/DSP/GPP prototype architecture. 22
Figure 10. Interface Design: Communication from Annapolis FPGA (F) to Mercury. ... 23
Figure 11. Interface Design: Communication from Mercury to Annapolis FPGA (B). ... 24
Figure 12. Illustration of how the major computational components of SAR processing

can be mapped onto the hybrid system. ... 24
Figure 13. Illustration of how the major computational components of STAP processing

can be mapped onto the hybrid system. ... 25
Figure 14. Figure 14. SAR Processing Flow. ... 25
Figure 15. Data distribution for Parallel SAR Processing on Mercury. 26
Figure 16. Space-time diagram for streaming parallel SAR processing........................... 27
Figure 17. Throughput requirements achieved for streaming parallel SAR processing... 28
Figure 18. Streaming parallel RT_STAP on Mercury Subsystem.................................... 29
Figure 19. Parallel RT_STAP on Mercury Subsystem... 30
Figure 20. Space-time diagram for parallel RT_STAP. ... 31
Figure 21. Throughput requirements achieved for the medium case parallel RT_STAP. 32

iv

Acknowledgments

I would first like to acknowledge and thank the graduate students that worked on this
project. Every publication associated with the project was co-authored with one or more
graduate assistants and was based on research conducted in conjunction with a PhD
dissertation or MS thesis.

Jeff Muehring (initially an MS student and later a PhD student) conducted research in
the area of determining optimal configurations for SAR (synthetic aperture radar)
processing. His work included the application of mathematical programming techniques
for determining optimal multiprocessor configurations for SAR. His techniques centered
on the concept of making the proper trade-off between processing hardware and memory
so as to minimize the overall power consumption of the system, while satisfying
throughput requirements. Jeff also made contributions in the domain of FPGA (field
programmable gate array) design by proposing a new way of implementing two-
dimensional signal processing tasks (including SAR) using very deep FPGA pipelines. In
addition, Jeff played an important role in designing and implementing the hardware
portions of the custom interfaces between the FPGA and DSP/GPP subsystems of the
constructed prototype platform.

Jack West (initially an MS student and later a PhD student) conducted research in the
area of minimizing communication time for STAP (space-time adaptive processing)
executing on a multiprocessor. By minimizing communication overhead, he
demonstrated that less hardware is required for given instances of STAP, thereby
reducing SWAP (size, weight, and power). The first phase of Jack’s work included the
development of a simulator for Mercury’s RACEway® interconnection network. This
fast and efficient simulator was used in the second phase of his work in which genetic
algorithm approaches were developed for solving the communication scheduling
problem. Jack also played important roles in developing the prototype system by helping
with the STAP application software implementation and by designing and implementing
the software portions of the custom interfaces connecting the FPGA and DSP/GPP
subsystems.

Tim Osmulski (MS student) developed and implemented an analytical tool, in
software, for estimating power consumption of a configured FPGA chip. This tool,
which was the first of its kind, demonstrated that it is indeed possible to accurately
predict FPGA power consumption by applying existing analytical approaches. The
accuracy of Tim’s tool was verified by comparing its predicted values with actual
measured power consumption taken from an instrumented FPGA board.

Hongping Li (PhD student) developed a new analytical approach for estimating power
consumption of circuits, including those implemented on a FPGA. His approach is based
on a Markov chain signal model, and directly accounts for correlations present among the
internal signals of the circuit. Hongping verified the accuracy of his approach using
PSpice® based simulation studies. Hongping also lead the effort in implementing the
parallel SAR application software on the multiprocessor system.

Nikhil Gupta (MS student) developed FPGA circuit designs to support core
calculations required by STAP. His work demonstrated that 16-bit block floating point

v

arithmetic provides acceptable accuracy for many situations. The advantage of using
block floating point arithmetic, instead of standard floating point, is the significant
reduction in the size and power consumption of the corresponding circuits. His research
illustrated that if the values of the input data are approximately uniformly distributed,
then the block floating point approach delivers acceptable accuracy.

Brian Veale (initially an MS student and later a PhD student) conducted a study
comparing different FPGA designs and implementations for an inner product co-
processor. He studied two architectural approaches for the co-processor and two different
types of arithmetic (integer and floating point) for a total of four combinations. For each
implementation, he also studied the effect that employing different degrees of pipelining
had on each design in terms of size, speed, and power consumption. His study of
pipelining resulted in some counterintuitive results. In particular, while it is well known
that increasing the degree of pipelining generally enables custom designs to be run at
faster clock rates, the same is not always true for FPGA designs.

Sirirut Vanichayobon (PhD student) studied the power-speed trade-off for a class of
circuits known as prefix circuits. These circuits are important in their own right, and are
representative of the type of circuit often required in high-performance embedded
applications. Through extensive analysis of a number of known prefix circuits, her work
illustrates that the trade-off between power and speed is not always obvious to the circuit
designer. Based on discoveries made through her research, some important guidelines for
properly matching circuit characteristics with power and speed requirements are
provided. Sirirut also lead the effort in implementing the parallel STAP application
software on the multiprocessor system.

I would also like to acknowledge the work and contributions of faculty colleagues. Dr.
Sudarshan Dhall served as co-PI on this project since the Fall of 1999; the time at which I
became Director of Computer Science at the University of Oklahoma. Dr. Dhall made
contributions in nearly all aspects of the project, and was particularly instrumental in
guiding the research of graduate assistants Sirirut Vanichayobon and Hongping Li. Dr.
Dhall’s expertise in system modeling – and probabilistic techniques in particular – was
extremely valuable. The project also benefited greatly by the contributions of Dr. S.
Lakshmivarahan. It was Dr. Lakshmivarahan that originally proposed the topic of
Sirirut’s research, and he and Dr. Dhall served as co-advisors of her PhD committee.

Next, I would like to acknowledge the assistance and guidance of key defense
personnel, starting with Rick Metzger of Rome Laboratory. Rick served as program
manager for a related prior project I performed for Rome Laboratory, and it was this past
work experience that enabled me to be successful in proposing and completing the
present project for DARPA.

I would like to acknowledge the support and encouragement of José Muñoz, who
served as the original program manager for DARPA’s ACS (Adaptive Computing
Systems) program. José provided valuable feedback and perspective throughout the
contract period. I had the opportunity to meet with José and his staff frequently, including
at annual reviews, PI meetings, and other professional conferences. He actively
encouraged and facilitated interaction and collaboration among the PIs of different

vi

projects, which ensured that the ACS program was cohesive and integrated. The
interactions with other PIs was stimulating, and served to accelerate and improve the
quality and relevance of the results delivered by all project PIs.

Assisting José Muñoz with the management of this project was Ralph Kohler of Rome
Laboratory. I met with Ralph on a regular basis at meetings and conferences and
communicated with him frequently through e-mail and telephone correspondence. Ralph
made a number of technical contributions and refinements to the project, and often served
as a sounding board on behalf of the military. He related to me the actual needs of the
war fighter, and these insights helped us to provide results that were more applicable than
would have otherwise been possible. Ralph also helped me tremendously with the overall
management and organization of the project.

Finally, I would like to thank Jules Bergmann of Rome Laboratory, who had the
unenviable task of encouraging me to complete and submit this final report. Jules was
most gracious and professional; he gently, but persistently, encouraged me to finish this
report. I would not want to think when this report would have been delivered without the
interaction and encouragement provided by Jules.

 1

Introduction

Organizational Structure of the Report

A challenge in organizing this report was to provide sufficient detail to readers that desire
it, while also providing a relatively high-level summary of the entire project. Published
materials that resulted from this project currently include eleven conference/journal
papers, two PhD dissertations, and five MS theses. The eleven published papers are
included in printed form in the appendices of this report. It was natural to include copies
of the papers in printed form and refer readers interested in further details to the
dissertations and theses (which are available online) because the papers were generally
derived from the dissertations and theses. It was infeasible to incorporate the
dissertations and theses in printed form; there are over 800 pages associated with these
documents. The report is organized hierarchically, as illustrated in Figure 1.

Final Report

Introduction Part 2

Part 4

Conclusion

Appendix B

Appendix A

Appendix E

Appendix D

Appendix C

Appendix H

Appendix G

Appendix F

Appendix J

Appendix I

Appendix K

References

Thesis Dissertation

Thesis

Dissertation Thesis

Thesis Thesis

Ph
D

 D
is

se
rta

tio
ns

an

d
M

S
Th

es
es

C
on

fe
re

nc
e

an
d

Jo
ur

na
l P

ub
lic

at
io

ns
Su

m
m

ar
y

of

B
as

ic
 R

es
ul

ts

Summaries Presentations PostersReports

A
dd

iti
on

al
M

at
er

ia
ls

In
cl

ud
ed

 in
 P

rin
te

d
Fo

rm
A

va
ila

bl
e

O
nl

in
e

Part 1

Part 3

Figure 1. Organizational structure of the report.

2

The main body of the report provides a summary of basic results, and includes four
major parts: (1) Optimal Multiprocessor Configuration for SAR; (2) Optimal
Communication Scheduling for STAP; (3) FPGA Power Prediction and Applications;
and (4) Hybrid FPGA/DSP/GPP Platform. Each of these parts is supported by a
collection of published papers, theses, and dissertations produced during the project
period. Copies of the published papers are included in the appendices of the report.
References to these publications are labeled with a number followed by the letter of the
appendix where a copy of the publication can be found. For example, reference label
[1A] indicates that a copy of the referenced publication can be found in Appendix A. Due
to size considerations, copies of theses and dissertations, such as reference [3], are not
included in an appendix; however, online links for all references are provided in the list
of references. For conference papers, links to the associated presentation materials are
also provided within the list of references. As illustrated in Figure 1, additional materials
are also available online, including annual project summaries, technical reports, and
presentations and posters given at conferences and PI (principal investigator) meetings.
Online links to additional materials are provided in the section entitled Additional
Materials, which follows the References section.

Each major part is divided into subsections, and each subsection provides an overview
of one or more published papers. Overviews of some of the conference papers (e.g.,
[15I] and [18K]) actually expand upon the publication by including content from the
presentation materials associated with that publication. Readers not needing the level of
detail found in these overviews are encouraged to first read the Acknowledgments
section, which includes a paragraph on the work conducted by each student assistant. Of
course readers requiring more detail are encouraged to pursue copies of the papers found
in the appendices, online links of presentation materials found in the References section,
and/or the online links found in the Additional Materials section.

Project Overview

The advantages of using digital signal processing (DSP) chips for high-performance
embedded signal processing applications have been demonstrated during the past decade.
DSP chips often win over general purpose processors (GPPs) because their complexity
(measured, for example, in terms of silicon area, number of transistors, or power
consumption) is better matched to the highly regular and numerical-intensive
computations required by many signal processing based embedded applications.
However, it is now apparent that even DSP chips can be overkill for some computations
found in common embedded military applications. That is, in some cases DSP chips are
equipped with much more architectural complexity than is actually needed, resulting in
inefficiencies and greater power consumption than absolutely necessary.

In this project, we investigated the advantages of integrating configurable hardware
together with a multiprocessor DSP/GPP platform. The computational engine of the
configurable hardware used in this project was comprised of FPGA chips. A primary goal
of our project was to demonstrate that for given computational loads – associated with
instances of embedded radar signal processing applications – the total size, weight, and

3

power (SWAP) could be reduced by integrating FPGA-based components as part of the
embedded computational platform.

Reconfigurable computing devices, such as FPGAs, can offer a cost-effective and
more flexible alternative than the use of application specific integrated circuits (ASICs).
FPGAs are especially cost-effective compared to ASICs when only a small number of the
chip(s) are required. Another major advantage of FPGAs over ASICs is that they can be
reconfigured to change their functionality while still resident in the system, which allows
hardware designs to be changed similar to software, and dynamically reconfigured to
perform different functions at different times.

A number of theoretical and empirical studies were conducted during the project
period to understand and demonstrate the advantages and disadvantages of DSP/GPP
versus FPGA technologies with respect to SWAP. A prototype heterogeneous
FPGA/DSP/GPP-based platform was constructed using commercial off-the-shelf (COTS)
components to demonstrate the utility of a hybrid system containing all three types of
technologies. A number of systematic approaches and tools based on mathematical
programming and modeling were developed to optimally configure FPGA/DSP/GPP-
based platforms for applications in the radar signal-processing domain. The two major
applications considered were SAR (synthetic aperture radar) and STAP (space-time
adaptive processing).

The prototype system was constructed using COTS components from two vendors:
Annapolis Micro Systems, Inc. and Mercury Computer Systems, Inc. We had excellent
support from both companies, and we designed and implemented a custom interface to
allow communication between two disparate product lines of these vendors.
Implementation of a custom interface was necessary because at that time (1997-98) there
were few interfacing standards among vendors such as the two we were working with
and little customer demand (excluding us, of course!) for providing such an interface.
The availability of products and support to more easily interface components from
different vendors, including the two we worked with, is much better today. In fact, the
output of our research, which illustrated the potential benefits of a hybrid
FPGA/DSP/GPP platform, served as a catalyst for these industry sectors to invest
significant resources and provide support and standards appropriate for interfacing their
product lines.

Brief Descriptions of Major Parts of the Report

Part 1: Optimal Multiprocessor Configuration for SAR – describes research for
determining optimal multiprocessor configurations for instances of the SAR processing
problem. The research was targeted at how to optimally configure a multiprocessor
system for given instances of the SAR problem so that the resulting power consumption
of the multiprocessor system is minimized. The key to the approach involved making the
proper trade-off between the number of processors and amount of memory associated
with the multiprocessor configuration. References associated with this work are [1A],
[2B], and [3].

4

Part 2: Optimal Communication Scheduling for STAP – describes research for
determining how to best schedule inter-processor communications of a parallel STAP
algorithm mapped onto a Mercury Race Multiprocessor. The approach is based on a
genetic algorithm, and the research also resulted in the development of a fast and
accurate network simulator for the RACEway® interconnection network. References
associated with this work are [4C], [5D], [6E], [7], and [8].

Part 3: FPGA Power Prediction and Applications – describes mathematical models and
other approaches developed for predicting power consumption for FPGA circuits. We
found that predicting power consumption for FPGAs was particularly difficult, as it
strongly depends on precisely how the chip is configured and the “activity”
characteristics of the input data being processed. Nevertheless, we generated new and
important results and tools in this area. We also demonstrated the utility of using FPGA
circuits for portions of the SAR and STAP applications. References associated with this
work are [9F], [10], [11G], [12H], [13], [14], [15I], [16J], and [17].

Part 4: Hybrid FPGA/DSP/GPP Platform – describes a prototype hybrid platform that
was constructed for this project. It includes the detailed design and development of the
custom interfaces implemented to interconnect the disparate products of the two vendors.
Some performance results are also included. The reference associated with this work is
[18K].

5

Part 1: Optimal Multiprocessor Configuration for SAR

Overview of References [1A], [2B], and [3]

The real-time embedded application considered in this part, i.e., SAR, as well as many
others of military interest, are characterized by a common theme: processing a continuous
stream of data collected from radar sensors. The rate at which data samples flow from the
sensor(s) to the computational platform is typically very high – often on the order of tens
or hundreds of millions of samples per second and even higher. Furthermore, the number
of calculations to be performed on each sample is typically at least 100 FLOPs (floating-
point operations), which amounts to an overall computational throughput requirement
ranging from at least one to ten billion FLOPs (and often much higher).

At the beginning of the contract period, approaches capable of providing a
computational platform that could achieve these types of computational throughput rates
typically involved a “pipeline of interconnected processors” style of architecture. Such an
approach could be a valid and effective architecture in some cases. However, situations
often arose in which the throughput requirements dictated that 100 or more SHARC® (or
similar) DSP processors were required. In many situations, the associated level of power
requirement for the computational platform alone posed a severe problem, because of the
strict power budgets available on UAVs (unmanned aerial vehicles) and satellites where
these systems are deployed.

In the paper [1A], we showed how a DSP/GPP-based multiprocessor system could be
optimally configured using two types of processor/memory daughtercards to minimize
overall power consumption for SAR applications. We showed that by careful (and often
counterintuitive) selection of parameters associated with both the hardware (the number
of daughtercards of two possible types) and the application software (a parameter known
as the azimuth section size), an optimal configuration (one with minimal power
consumption) can be derived based on the application of mathematical programming
techniques.

Our approach centered on the derivation of two mathematical formulas for given
instances of the SAR problem: one for the total numbers of processors required and the
other for the total memory required. Both of these functions are dependent on the choice
of the section size parameter. The derived functions dictate that if a small section size is
used, then the associated memory requirements are small, but the processor requirements
are high. On the other hand, a large section size was shown to result in a requirement for
fewer processors, but more memory.

The reason a large section size implies that fewer processors are required is because
only a small fraction of data is discarded during the calculation of the so-called sectioned
fast convolutions (refer to Figure 2). This implies that the processors are being used with
high efficiency when the section size is large. On the other hand, when a small section
size is used, then more processors are required because a relatively large fraction of data
is overlapped. From Figure 2, note that the overlapped data samples are actually
processed twice. Although achieving high processor efficiency is a traditional objective,
the trade-off is that implementing the associated large section sizes requires extra

6

memory, and extra memory consumes extra power. It is this inherent trade-off between
processor efficiency, memory, and section size that our approach optimized.

Kernel

Discard

Overlap
Section

FFT size

Large Overlap/Section ratio ⇒ Small azimuth memory, large number azimuth processors
Small Overlap/Section ratio ⇒ Large azimuth memory, small number azimuth processors

Figure 2. This diagram illustrates the method of performing sectioned fast convolutions
on azimuth input data with a pre-stored kernel. Given that the kernel size is
fixed, then if the section size is made large, a relatively small fraction of
samples are discarded for each section, thus making processor efficiency high.
Conversely, if the section size is small, then a relatively large fraction of
samples must be discarded for each section, resulting in poor processor
efficiency, but relatively small memory requirements.

The two daughtercards assumed to be available in our approach were: Type 1, which
had six SHARC® processors and a total of 32MB of memory; and Type 2, which had
two SHARC® processors and a total of 64MB of memory. Thus, our optimization
procedure was based on minimizing total consumed power based on proper selection of
three parameters: section size, number of Type 1 cards, and number of Type 2 cards.
Note that allowing two daughtercards in the configuration put additional constraints on
the types of configurations that were possible. Thus, in general, arbitrary numbers of
processors and amounts of memory could not me configured. However, the underlying
concept of trading the efficiency of processors for more memory was still present.

One interesting lesson learned from our study happened when we considered a
situation in which only Type 1 cards were assumed to be available for configuring the
system (recall that the Type 1 card is “processor rich” and “memory poor” as compared
with the Type 2 card). For this case of configuring only with Type 1 cards, the
optimization procedure selected very small section sizes – smaller than one would think
to be reasonable. We had to think about why this was happening; it went against our
intuition. After some thought, we realized the reason – the objective of our optimization,
afterall, was to minimize consumed power, not to maximize processor efficiency. The
mathematical programming procedure had no regard for processor efficiency; its only
concern was to use the available resources (in this case a lot of processors, and not much
memory) to minimize total consumed power. If that means inefficient use of the
processors, then so be it.

Consider why it is generally not optimal to force our expectations about what
“reasonable” processor efficiencies should be for the case discussed in the previous
paragraph. To achieve such efficiencies may require substantial memory (refer to Figure

7

2). So, if “reasonable” processor efficiencies are forced into the configuration, then the
number of cards required by the configuration must increase – not because more
processors are required, but because more memory is required. In fact, some processors
will be idle while the few “efficient ones” are working away – the resource being fully
used is the memory. Recall that consumed power is in direct proportion to the number of
cards in the configuration. This helped us understand a new interpretation for what our
optimization procedure was actually doing: piecing together the “pre-configured silicon”
cards available in the most power efficient way possible. Forget about the importance of
processor efficiencies that we study/teach in our parallel processing courses!

References [2B] and [3] further refine the results of [1A]. The most notable refinement
involves the concept of configuring a compute node. In the Mercury system, a compute
node (CN) is an entity on a daughtercard consisting of one or more compute elements
(CEs). A compute element, in this context, is a SHARC® processor. In our study, the
Type 1 cards were populated with CNs in which each CN contains 3 CEs; and the Type 2
cards were populated with CNs in which each CN contains 2 CEs. In [2B] and [3], we
defined formulations to our optimization problem in which the utilization of each CN is
determined by the optimization procedure.

Figure 3 illustrates optimal configurations for a wide range of SAR operating points.
The horizontal resolution axis represents the desired SAR image resolution in meters, and
the vertical velocity axis is the speed of the vehicle (e.g., UAV) in meters/sec. The legend
on the right side of the figure indicates two possible choices (X and Y) for CN
configurations. The value of XT and YT indicate the card Type (1 or 2) selected for the X
and Y configurations. For example, the red square symbol ‘ ’ is associated with the use
of card Type 1 for the X configuration (i.e., XT = 1) and card Type 2 for the Y
configuration (i.e., YT = 2). Furthermore, for the X configuration, one CE (for each CN) is
utilized for range processing (i.e., Xr =1) and two CEs are used for azimuth processing
(i.e., Xa = 2). Similarly, for the Y configuration, none of the CEs are used for range
processing, and both CEs (for each CN) are used for azimuth processing (because Yr = 0
and Ya = 2). For the sake of comparison, consider now the configurations associated with
the blue times symbol ‘×’ where both the X and Y configurations use the Type 1 card, but
the utilization of the CNs for X and Y are distinct. The number of configured CNs, and
thus the total number of cards of each type, is also provided by the optimization
procedure, but is not shown on Figure 3.

Although subtle, perhaps, this part of the work is extremely important because it cuts
to the heart of a bigger issue. The most fundamental questions of interest for these types
of systems should not necessarily be expressed in terms of processor efficiencies, or even
processors or memories at all; what is important is the “configuration of the silicon,” i.e.,
how can it be configured to minimize SWAP. The mixing of the two card types we
studied is only a rough approximation to this general concept of “configurable silicon.”
With two discrete card types available, many, but not anywhere near all, possible
combinations of processors and memories can be configured. But remember, processors
and memory are not the only things we can build out of silicon. More specialized
functional units can also be built.

8

Parts 3 and 4 of this report deal with a key aspect of the project – namely, is it always
necessary to configure silicon as discrete processor and memory modules? Could it be
that silicon configurations consisting of modules or functional units less complex than
processors and memories are also possible, and have superior SWAP characteristics in
some situations? Before getting to the answers to these questions, the next part of this
report deals with optimizing the SWAP performance of a multiprocessor implementation
for STAP. Although Part 2 is similar to Part 1 in the sense that only processors and
memories (and not reconfigurable computing) are assumed in the computing platform,
the mechanism for minimizing SWAP in the STAP application centers around effective
use of the interconnection network that supports interprocessor communication.

0.5 1 1.5 2
50

100

150

200

250

300

350

400

Resolution

V
el

oc
ity

1 1 2
2 1 1
1 1 2 1 2 1

XT Xr Xa YTYrYa

1 1 2 2 0 1

1 2 1 2 0 2
1 3 0 2 0 2
1 3 0 2 1 1
2 0 2 2 1 1

1 1 2 2 1 1

2 1 1 2 2 0

1 1 2 2 0 2

Figure 3. Optimal CN Configurations of the CN-constrained Model [2B].

9

Part 2: Optimal Communication Scheduling for STAP

Overview of References [4C], [5D], [6E], [7], and [8]

The work here develops and evaluates a genetic-algorithm-based (GA-based)
optimization technique for the scheduling of messages for a class of parallel embedded
signal processing techniques known as space-time adaptive processing (STAP). The GA-
based optimization is performed off-line, resulting in static schedules for the compute
nodes of the parallel system. These schedules are utilized for the on-line implementation
of the parallel STAP application. The primary motivation and justification for devoting
significant off-line effort to solving the formulated scheduling problem is the resulting
reduction of hardware resources required for the actual on-line implementation. Studies
illustrate that reductions in hardware requirements of around 50% can be achieved by
employing the results of the proposed scheduling techniques. This reduction in hardware
requirement is of critical importance for STAP, which is typically an airborne application
in which the size, weight, and power consumption of the computational platform are
often severely constrained.

For an application implemented on a parallel and embedded system to achieve
required performance, it is important to effectively map the tasks of the application onto
the processors in a way that reduces the volume of inter-processor communication traffic.
It is also important to schedule the communication of the required message traffic in a
manner that minimizes network contention so as to achieve the smallest possible
communication times.

Mapping and scheduling can both – either independently or in combination – be cast
as optimization problems, and optimizing mapping and scheduling objectives can be
critical to the performance of the overall system. For embedded applications, great
importance is often placed on determining minimal hardware requirements that can
support a number of different application scenarios. This is because there are typically
tight constraints on the amount of hardware that can be accommodated within the
embedded platform. Using mappings and schedules that minimize the communication
time of parallel and embedded applications can increase the overall efficiency of the
parallel system, thus leading to reduced hardware requirements for a given set of
application scenarios.

The work here focuses on using a GA-based approach to optimize the scheduling of
messages for STAP algorithms. STAP is an adaptive signal processing method that
simultaneously combines signals received from multiple elements of an antenna array
(the spatial domain) and from multiple pulses (the temporal domain) of a coherent
processing interval. The focus of this research assumes STAP is implemented using an
element-space post-Doppler partially adaptive algorithm; refer to references [6E], [7],
and [8] for details.

STAP involves signal processing methods that operate on data collected from a set of
spatially distributed sensors over a given time interval. Signal returns are composed of
range, pulse, and antenna-element digital samples; consequently, a three-dimensional (3-
D) data cube naturally represents STAP data. A distributed memory multiprocessor

10

machine is assumed here for the parallel STAP implementation. The core processing
requirement proceeds in three distinct phases of computation, one associated with each
dimension of the STAP data cube. After each phase of processing, the data must be re-
distributed across the processors of the machine, which represents the communication
requirements of this parallel application. Thus, there are two primary phases of inter-
processor data communication required: one between the first and second phases of
processing and one between the second and third phases of processing. After all three
phases of processing are complete for a given STAP data cube, a new data cube is input
into the parallel machine for processing.

A proposed GA-based approach is used to solve the message-scheduling problem
associated with each of the two phases of inter-processor data communication. This GA-
based optimization is performed off-line, and the results of this optimization are static
schedules for the compute nodes of the parallel system. These schedules are used within
the on-line parallel STAP implementation. The results of the study show that significant
improvements in communication time performance are possible using the proposed
approach for scheduling. It is then shown that these improvements in communication
time translate to reductions in required hardware for a class of scenarios. Performance of
the mappings and schedules are evaluated based on a Mercury RACEway® network
simulator developed under this project and described in references [4C] and [7].

For this work, the STAP data cube is partitioned into sub-cube bars of vectors where
each vector is mapped onto a given CN (compute node), refer to [6E] for more details. A
two-dimensional process set, as described in [8], defines the mapping of data onto CNs
for each computational phase. Additionally, the process set defines the communication
pattern for the required “distributed corner turns” of the STAP data cube.

Summarizing the results published in [6E] and [8], it is demonstrated that off-line GA-
based message scheduling can significantly improve the communication performance in a
parallel system. When compared to baseline and randomly generated schedules, the GA-
based schedules are significantly superior – typically reducing communication times by
between 20% and 50%, see [8] for details.

Interestingly, it is shown that the best mapping – defined as a mapping that minimizes
a mapping objective function – is not always the best choice in terms of minimizing
overall communication time. In particular, as the number of CNs is increased, optimal
mappings that require only one phase of communication generally report higher overall
communication times than those good (but not optimal) mappings that require two non-
trivial phases of communication.

The optimization of mapping and scheduling, either independently or in combination,
is critical to the performance of the STAP application for embedded parallel systems. For
such systems, great significance is placed on minimizing overall execution time, which
includes both computation and communication components. Such reductions in execution
time also translate into improved hardware efficiency and thus reduced hardware
requirements, which is often critical.

Through extensive numerical studies, it is shown in [6E] and [8] that the GA-based
optimization approaches can yield mappings and schedules that greatly improve the on-

11

line performance and reduce the hardware requirements of the parallel embedded system.
Examples are provided that illustrate the optimal mapping and scheduling methodologies
of [6E] and [8] can produce hardware savings of 50% and more when compared to
typical solutions to the mapping and scheduling problems that might be employed by
practitioners. Because of limitations on the size of problems that were
executed/simulated, systems up to a size of only 32 processors were investigated.
However, from the trends observed in overall completion times, it is apparent that even
more significant savings in hardware/power requirements are realizable for STAP
applications that require substantially larger systems having hundreds or even thousands
of processors.

12

Part 3: FPGA Power Prediction and Applications

We discovered during the project period that predicting power consumption for an FPGA
is a very difficult task. There were no commercially available tools that accurately
predicted power consumption for any of the existing FPGAs. Thus, a major focus of this
part of the work involved the development of accurate methods for predicting FPGA
power consumption. References generated by this project in the area of power prediction
include [9F], [10], and [11G], which are overviewed in Section 3.1.

In addition to trying to understand and predict FPGA power consumption, we also
studied the types of computations that could be effectively mapped onto FPGAs. In
theory, given enough gates, one could imagine configuring an FPGA board to behave as
a microprocessor. Thus, again in theory, an FPGA board could be used to perform any
type of calculation. However, based on the available technology, this would be extremely
impractical. Our goal was to therefore use FPGAs to devise useful modules that are much
less complex than a microprocessor, thereby reducing the SWAP overhead inherent when
computations are performed only on microprocessors and/or DSPs. So, one of our aims
was to characterize the types of computations that can be practically implemented in
FPGAs. References produced in the area of mapping applications onto FPGAs include
[12H], [13], [14], [15I], [16J], and [17], and these are overviewed in Section 3.2.

3.1 FPGA Power Prediction

Overview of References [9F] and [10]

The work published in [9F] and [10] describes a practical and accurate power prediction
tool for the Xilinx® 4000-series FPGA. The utility of the tool is that it enables FPGA
circuit designers to evaluate the power consumption of their designs without resorting to
the laborious and expensive empirical approach of instrumenting an FPGA board/chip
and/or taking actual power consumption measurements. Preliminary evaluation of the
tool indicates that an error of less than 5% is usually achieved when compared with
actual physical measurements of power consumption.

The tool, which is implemented in Java, takes as input two files: (1) a configuration
file associated with an FPGA design and (2) a pin file that characterizes the signal
activities of the input data pins to the FPGA. The configuration file defines how each
CLB (configurable logic block) is programmed and defines signal connections among the
programmed CLBs. The configuration file is a text file that is generated using a Xilinx®
M1 Foundation Series utility called ncdread. The pin file is also a text file, but is
generated by the user. It contains a listing of pins that are associated with the input data
for the configured FPGA circuit. For each pin number listed, probabilistic parameters are
provided which characterize the signal activity for that pin.

Based on the two input files, the tool propagates the probabilistic information
associated with the pins through a model of the FPGA configuration and calculates the
activity of every internal signal associated with the configuration. The activity of an
internal signal s, denoted as, is a value between zero and one and represents the signal’s

13

relative frequency with respect to the frequency of the system clock, f. Thus, the average
frequency of signal s is given by as f.

Computing the activities of the internal signals represents the bulk of computations
performed by the tool. Given the probabilistic parameters for all input signals of a
configured CLB, the probabilistic parameters of that CLB’s output signals are determined
using a mathematical transformation. Thus, the probabilistic information for the pin
signals is transformed as it passes through the model of the configured logic, defined by
the configuration file. However, the probabilistic parameters of some CLB inputs may
not be initially known because they are not directly connected to pin signals, but instead
are connected to the output of another CLB for which the output probabilistic parameters
have not yet been computed (i.e., there is a feedback loop). For this reason, the tool
applies an iterative approach to update the values for unknown signal parameters. The
iteration process continues until convergence is reached, which means that the
determined signal parameters are consistent based on the mathematical transformation
that relates input and output signal parameter values, for every CLB.

The average power dissipation due to a signal s is modeled by ½ Cd(s)V 2as f, where
d(s) is the Manhattan distance the signal s spans across the array of CLBs, Cd(s) is the
equivalent capacitance seen by the signal s, and V is the voltage level of the FPGA
device. The overall power consumption of the configured device is the sum of the power
dissipated by all signals of the configured FPGA.

For the study conducted in [9F], a total of 70 power measurements were made using
five different configuration files and fourteen different data sets. Descriptions of these
configuration files and data sets are given in [9F]. Each of the configuration files used
take a total of 32-bits of data as input. The first three configurations (fp_mult, fp_add,
int_mult) each take two 16-bit operands on each clock cycle, and the last two (serial_fir
and parallel_fir) each take one 32-bit complex operand on each clock cycle. The 32 bits
of input data are numbered as 0 through 31, and two key parameters are used to
characterize these bits: an activity factor, a and a probability factor, p. As mentioned
earlier, the activity factor of an input bit is a value between zero and one and represents
the signal’s relative frequency with respect to the frequency of the system clock, f. The
probability factor of a bit represents the fraction of time that the bit has a value of one.

Figure 4 shows plots of the measured power for all combinations of the configuration
files and data sets considered. For all cases, the clock was run at f = 30 MHz. With the
exception of the fp_mult configuration file, the most active data set file (number 6) is
associated with the highest power consumption. Also, the least active data set file
(number 5) is associated with the lowest power consumption across all configuration
files. There is somewhat of a correlation between the number of components utilized by
each configuration and the power consumption; however, it turned out that even though
the serial_fir implementation is slightly larger than parallel_fir, it consumes less power.
This is likely due to the fact that the parallel_fir design requires a high fan-out (and thus
high routing capacitance) to drive the parallel multipliers.

In addition to the graph shown in Figure 4, additional figures are provided in [9F] that
overlay estimates of power consumption predicted by the tool developed in this project.

14

As mentioned above, predicted values of power were generally within 5% of actual
measured values.

0 2 4 6 8 10 12 14

2.0

2.5

3.0

3.5

4.0

4.5

5.0 Configure f iles:
 fp_mult
 fp_add
 int_mult
 serial_fir
 parallel_f ir

Po
we

r C
on

su
m

pt
io

n
(w

)

data sets

Figure 4. Measured power consumption of the configuration files and data sets from [9F].

Overview of Reference [11G]

The method used by the above tool to compute signal activities was based on a
previously published approach from another research group. That approach has some
difficulties, primarily related to its time complexity. In [11G], a new analytical approach
was developed by us for calculating signal activities. Our approach is based on a Markov
chain signal model, and directly accounts for correlations present among the signals. We
verified the accuracy of the approach by comparing signal activity values calculated
using our approach with corresponding values produced through simulation studies. It
was also demonstrated that the proposed approach is much more computationally
efficient than competing approaches. In addition to describing the new approach for
calculating signal activities, [11G] also provides a comprehensive review of past
approaches, including the approach implemented for the tool described in [9F] and [10].

3.2 FPGA Applications

Overview of References [12H] and [13]

In references [12H] and [13], techniques for mapping portions of space-time adaptive
processing (STAP) computations onto FPGAs are described. The output of STAP is a
weighted sum of multiple radar returns, where the weights for each return in the sum are
calculated adaptively and in real-time. The most computationally intensive portion of
most STAP approaches is the calculation of the adaptive weight values, which typically

15

constitutes over 90% of all the computations needed in adaptive processing. Calculation
of the weights involves solving a set of linear equations based on an estimate of the
covariance matrix associated with the radar return data. The traditional approach for
computing the adaptive weights is based on a direct method called QR-decomposition.
This method has a fixed computational complexity, which depends on the size of the
equation matrix and provides the exact solution. An alternative approach based on an
iterative method called Conjugate Gradient was investigated, which allows for trading off
accuracy for reduced computational complexity. The two approaches are analyzed and
compared in [13]. The results show that the Conjugate Gradient approach can reduce the
computations needed at the cost of reduced accuracy in some cases.

Existing computational strategies for STAP typically rely exclusively on the use of
multiple DSPs and/or GPPs. An alternative strategy is proposed in [12H] and [13], which
makes use of FPGAs as vector co-processors that perform inner product calculations.
Two different “inner-product co-processor” designs are introduced for use with a host
DSP or GPP. The first has a multiply-and accumulate structure and the second uses a
reduction-style tree structure having two multipliers and an adder. For a fixed clock rate,
the second design can provide a higher throughput, but requires more computation from
the host (to perform the final summation of the partial sums).

In the work of [12H] and [13], the two inner-product co-processors were implemented
using a block floating point format, which is much simpler to implement than standard
floating point units. We also investigated overall accuracy of block floating point versus
full floating point. It was demonstrated that the block floating point co-processors
produce acceptable accuracy results for input data distributions that are uniformly
distributed. Poor results are obtained, however, for cases where one or a few of the
elements are much larger than the rest of the numbers. This is because the block-floating-
point architecture normalizes all the exponents to the maximum exponent by shifting out
the least significant bits of the mantissa so that all the exponents are equal, and then all
the operations are integer arithmetic operations (based on the resulting mantissas), which
are much easier to perform than general floating-point operations. The shifting out of the
bits produces inaccuracy in the computations. For all the ranges of numbers considered,
if the numbers are uniformly distributed, then the exponent distribution has an increasing
exponential shape with a majority of the numbers close to the maximum value in the
exponent domain. This results in a small number of bits from the mantissas of the
numbers being shifted out, on the average. Another important point is that the multiply
implementation uses a 15-bit mantissa, which implies that the mantissa of the input
floating-point number is truncated to 15 bits from 23 bits, which itself introduces some
inaccuracies.

Overview of Reference [14]

In reference [14], further studies of inner-product co-processor designs were conducted.
In contrast to the inner product designs of [12H] and [13], which were based on a block
floating point format, both floating point and integer formats were used in [14], both
using 16-bit formats. The studies demonstrated that inner-product co-processors, for both

16

integer and floating-point data, could fit into current (at that time) FPGA technology and
achieve significant speed and throughput. The results of the implementations show that it
is feasible and beneficial under certain circumstances to implement floating-point and
integer operations in FPGAs (i.e., such as when a custom data format can be used, as
with the SHARC® DSP which can convert back and forth between IEEE 32-Bit floating
point and the SHARC® DSP 16-bit floating point formats).

The studies in [14] also considered the advantages and disadvantages of employing
different degrees of pipelining in the inner product designs. One interesting (and
somewhat counterintuitive) outcome related to pipelined versions of the designs was that
adding more pipeline stages did not always allow for an increased clock speed at which
the circuit could be executed. This was due to the fact that adding in the pipeline stages
also added more overall complexity, which made it more difficult for the place-and-route
routines of the FPGA design tool to find good implementations. Thus, as more pipelined
stages were added, critical signal lengths sometimes increased, dictating that the clock
rate actually had to be decreased. Estimates of power consumption were also evaluated
for all designs considered in [14].

Overview of Reference [15I]

Two major contributions are presented in [15I]. First, it is shown that the core
computations from the SAR application, including both the range compression and
azimuth processing phases, can be structured as a single deep computational pipeline that
can be implemented directly on an array of FPGAs. Past results for high-throughput SAR
processing (e.g., refer to [1A], [2B], and [3]) typically assume the computations are to be
mapped onto a distributed memory multiprocessor system in which a subset of the
available compute elements (CEs) is assigned to perform range processing and the
remaining CEs perform azimuth processing. In this type of traditional approach, a
number of processed range vectors are sent from the range CEs to the azimuth CEs where
they are buffered in memory. After a prescribed number of compressed range vectors are
present in the memory space of the azimuth CEs, azimuth processing commences on the
azimuth CEs. Because of the significant intermediate buffer storage required by this
approach, and the associated placing and fetching of data in this memory space by the
range and azimuth CEs, respectively, this type of SAR implementation is generally not
thought to be “purely streaming.” However, as is presented in [15I], these computations
(both phases) can in fact be structured as a single computational pipeline, which can be
directly mapped onto an array of FPGAs.

In the proposed approach, no intermediate memory buffer is required between the two
phases of computation. Instead, within the structure of the computational pipeline are
long segments of delay elements that effectively provide the intermediate storage
associated with the more traditional approach. Figure 5 illustrates the structure of the
computational pipeline. In the figure, small values of parameters are used for the purpose
minimizing the size of the pipeline, while still illustrating its basic structure. Realistic
parameters values would be on the order of thousands, resulting in a pipeline with
millions of registers. Further details on sizing analysis and hardware comparisons

17

between a deep pipeline implementation versus a multiprocessor implementation are
provided in the online link to the presentation materials for reference [15I].

a2r1 a2r0 a1r1 a1r0 a0r1 a0r0

Example: no. range bins = n = 4 range kernel size = r = 2 azimuth kernel size = a = 3

R0
>

R1
>

R2
>

R3
>

R4
>

R5
>

R6
>

R7
>

R8
>

R9
>

+

input
stream

output
stream

+ +

+

+

no. registers = (a × n) – (n – r) no. KCMs = (a × r)
Figure 5. Structure of the deep pipeline.

 One potential advantage of the proposed approach is that data need not be

continuously stored and then fetched from a separate memory module by CEs (which,
incidentally, can require significant power consumption). Instead, the data streams
continuously through a long computational pipeline. Within this pipeline are the taps of
the FIR (finite impulse response) implementations of both the range and azimuth
processing, interspersed with segments of delay elements. Although the resulting pipeline
may be thousands of stages long for practical values of SAR parameters, it is a viable
approach because end-to-end latencies on the order of 1 millisecond are typically
acceptable, provided that the required throughput is achieved.

The second contribution presented in [15I] demonstrates how signal activity
parameters of incoming data can be transformed, before the data are processed by a
computational pipeline, as a means of reducing overall power consumption. The key to
understanding this approach is the realization that the activity levels of the input signals
to the computational pipeline dictate its level of power consumption. The activity of a
given input signal (i.e., bit position) is defined as the fraction of time that the signal
transitions relative to the system clock. We demonstrated that increasing/decreasing the
signal activities of input data to a pipelined circuit implemented on an FPGA also

18

increases/decreases the power consumption of the circuit. In [15I], we introduce a
concept for how the activities of the input data can be transformed (pre-processed) so that
the resulting (transformed) signals that are input into the computational pipeline have
activity values that are well-matched with the pipelined circuit in terms of minimizing
consumed power. At the end of the computational pipeline, an inverse transformation is
applied to the output values to convert them back to their proper (and meaningful)
representation. This concept is illustrated in Figure 6. The approach is based on two
fundamental assumptions: (1) that the power consumption of the computational pipeline
is significantly higher than that of the computational structures implemented to perform
the transform and inverse transformation of the data and (2) that the computations
performed within the computational pipeline are linear and time invariant.

Deep Pipeline

Assume Power Model
P(a’)

input
stream

output
stream

-1TT
a a’

Figure 6. Using activity transformations to minimize power consumption.

Overview of References [16J] and [17]

References [16J] and [17] present a comparative study of different parallel prefix circuits
from the point of view of power-speed trade-off. The prefix circuit plays an important
role in many applications such as the carry-look-ahead adder, ranking, packing, and radix
sort. The power consumption and the power-delay product of seven parallel prefix
circuits were compared. By assuming a linear capacitance model, combined with
PSpice® simulations, we investigated the power consumption in the parallel prefix
circuits. The degrees of freedom studied include different parallel prefix architectures and
voltage scaling. The results show that the use of the linear output capacitance assumption
provides power estimates that are consistent with those obtained using PSpice®
simulations. It was found that the divide-and-conquer prefix circuit, which is the fastest
circuit considered, consumes the most power. Also – according to PSpice® simulations –
the power-delay product of the LYD (Lakshmivarahan-Yang-Dhall) prefix circuit was
the best (i.e., lowest) among the circuits studied, while the power-delay product of the
divide-and-conquer was the highest. This study demonstrates the importance of careful
analysis of the speed-power trade-off when considering architectural choices for
implementing a given computational function in hardware.

19

Part 4: Hybrid FPGA/DSP/GPP Platform

Overview of Reference [18K]

The prototype platform was developed to demonstrate the advantages and trade-offs
associated with the combined use of different hardware technologies for two embedded
radar-processing applications, namely SAR and STAP. The primary metrics of interest
are size, weight, and power utilizations. The developed system can be configured with
FPGAs, DSPs, and/or GPPs. Although the prototype system was not evaluated through
fielded studies, experiments involving continuous input streams at relatively high rates
were conducted in the laboratory using unprocessed radar data as input.

The FPGA components of the prototype system are commercially available
WildOneTM and WildForceTM boards (from Annapolis Microsystems) populated with
4000-series Xilinx® parts. The WildForceTM boards each have four 4085-series FPGAs
plus one control FPGA. The DSP/GPP components of the system are within a Mercury
Race Multicomputer configured with both SHARC® and PowerPC® CNs. The Mercury
system can be configured with up to eight PowerPC® nodes and eight SHARC®
compute nodes (each SHARC® CN actually contains three SHARC® DSP chips).

An overview of the overall architecture is depicted in Figure 7. A more detailed view
of the major components of the hybrid system are illustrated in Figure 8, and a
photograph of the actual prototype system is provided in Figure 9.

The source PC is responsible for initially loading unprocessed radar data (from disk)
into a circular buffer within its main memory. Once the input data is loaded into the
circular buffer, the source PC then continuously (and repeatedly) streams this data into
the front-end FPGA subsystem, denoted as (F) in Figures 7, 8, and 9. It was necessary to
locate the input data in a large main memory buffer in order to achieve realistic data
throughput rates, which would otherwise not be possible if the data were streamed
directly from the disk of the source PC. All of the Annapolis FPGA boards are PCI-
based and reside on the data source and/or data sink PCs. A total of four WildForceTM
boards are available, and zero or more of these may reside on the source and sink PCs.
The source and sink PCs also contain one WildOneTM board each. The WildOneTM
boards are not used for computation; they handle the data communication (through the
PCI bus) between the PCs and the FPGA subsystems. The data communication among all
FPGA boards is through two types of 36-bit wide connectors, one called systolic and one
called SIMD.

The data communication between the front-end FPGA subsystem (F) and the
DSP/GPP subsystem is a custom interface developed using the systolic connector from
Annapolis and the RIN-T input device from Mercury. Similarly, the data communication
between the DSP/GPP subsystem and the back-end FPGA subsystem (B) is through a
custom interface developed using the ROUT-T output device from Mercury and the
systolic connector from Annapolis. More details on the design of the interfaces between
the Mercury and the front- and back-end subsystems are provided in Figures 10 and 11,
respectively.

20

Data
Source

VME

Mercury
System

CNCNPEPE
... ...

SPARC

Reconfigurable
Subsystem

DSP/GPP
Subsystem

Data
Sink

Annapolis
System

(F)
120 MB/sec

PC

120 MB/sec120 MB/sec

PC

PCI Custom Custom

PEPE
...

Reconfigurable
Subsystem

Annapolis
System

(B)

PCI

120 MB/sec

Hybrid FPGA/DSP/GPP Prototype Architecture
Block Diagram

Figure 7. Block diagram of the FPGA/DSP/GPP prototype architecture.

Design and implementation of the interface connecting the Mercury to the back-end
FPGA subsystem (B), shown in Figure 11, was particularly challenging. The clock signal
used to strobe the data from the Mercury was not programmable; it was fixed at 33 MHz.
It turned out that the input impedance of the back-end FPGA subsystem was not very
well matched with the output of the Mercury subsystem. As a result, the maximum clock
rate possible was only about 8Mhz, or about one-fourth of fixed 33Mhz clock available.
So, we implemented a scheme in which four copies each data word was transmitted from
the Mercury, which effectively reduced the clock rate by a factor of four. We also had to
include a packing scheme, which encoded two bits of each transmitted word to enable
detection of the boundary between groups of copied data. This was necessary because the
actual number of copies of each word received by the back-end GPGA subsystem was
unpredictable, and varied between two and four. More details on this scheme can be
found at the online link to the presentation materials for reference [18K].

Figures 12 and 13 illustrate how the major computational components of the SAR and
STAP applications can be mapped onto the prototype system. A candidate mapping is
defined by assigning the computations of each major component to one or both of the
symbols shown in each block (which correspond to one of the FPGA or DSP/GPP
subsystems defined in Figure 7). Using SAR to illustrate, one mapping would be to

21

perform all of the range compression on the front-end FPGA subsystem (F) and then
perform all azimuth processing on the DSP/GPP subsystem. Another possible mapping is
defined by using the FPGA subsystems and the DSP/GPP for both components of
computation. It is also possible to use only the DSP/GPP subsystem for both components
of computations.

PCI MOTHER BOARD
PENTIUM DRAM

W
IL

D

O
N

E

SR
AM

SR
A

M

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

HARD DISK DRIVE

Hybrid FPGA/DSP/GPP Prototype Architecture
Logical Detail

PCI MOTHER BOARD
PENTIUM DRAM

W
IL

D

O
N

E

SR
A

M

S
R

AM

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

HARD DISK DRIVE

C
N C

N C
N

C
N C

N C
N C

N

C
N C

N

C
N C

N C
N C

N

C
N

D
R

AM

AS
IC

R
IN

-T

VME BACKPLANE

M
ER

C
U

R
Y

R
A

C
E

M
C

H
 9

U
 B

O
A

R
D

H
AR

D
 D

IS
K

D
R

IV
E

D
R

AM
SP

AR
C

R
O

U
T-

T FO
R

C
E

SP
A

R
C

 5
V

C
N

Data Source
PC

Annapolis
FPGA

Subsystem
(F)

Custom
Interface
Cables

SPARC

Mercury
DSP/GPP

Subsystem

Data Sink
PC

Annapolis
FPGA

Subsystem
(B)

Figure 8. Detail of the FPGA/DSP/GPP prototype architecture.

The SAR studies were designed by adapting the RASSP (Rapid Prototyping of

Application Specific Signal Processors) benchmark developed originally by Lincoln
Laboratory at MIT. The benchmark, which was originally implemented in serial C code,
was first modified to execute on the parallel DSP/GPP subsystem. A data-streaming
component was also added so that input data can be sent continuously from the data
source of the prototype system. Core computations from the range compression and
azimuth processing components were implemented for the FPGA subsystems, as
described earlier in Part 3 of this report.

An overview of SAR processing flow is provided in Figure 14. The data distribution
scheme for SAR is illustrated in Figure 15. For the case shown in the figure, a total of
eight CNs were utilized: two SHARC® CNs (one for input and the other for output) and
six PowerPC® CNs (two for range processing and four for azimuth processing). A
detailed timing diagram is shown in Figure 16. Note from this figure that the processing

22

is well balanced and that the amount of idle time for each CN is relatively small. A
summary of time and throughput results are provided in Figure 17. Note that the required
input and output throughputs realized for this particular study, 0.71 Mbytes/sec and 1.42
Mbytes/sec, are well within the maximum capacity supported by the custom interfaces of
60 Mbytes/sec and 31 Mbytes/sec (refer to Figures 10 and 11). This implies that the
constructed prototype system is capable of processing much more intensive instances of
SAR processing.

Hybrid FPGA/DSP/GPP Prototype Architecture
Photograph

Data Sink
PC

Data Source
PC

Custom Interface Cables

Mercury
DSP/GPP

Subsystem

Annapolis
FPGA

Subsystem
(F) Annapolis

FPGA
Subsystem

(B)

SPARC

Figure 9. Photograph of the FPGA/DSP/GPP prototype architecture.

The STAP studies were designed by adapting the RT_STAP (Real Time STAP)

benchmark developed originally at the MITRE Corporation. This benchmark was already
implemented for parallel execution on a PowerPC-based Mercury system. This
implementation was expanded to also enable execution on SHARC® compute nodes. The
same basic data streaming component that was developed for SAR was also adapted to
enable the STAP input data to be sent continuously from the data source. Core
computations from the range compression and weight computation components from the
STAP processing flow were implemented for the FPGA subsystems.

Similar to the figures associated with SAR, an overview of the scheme used to stream
STAP processing is provided in Figure 18. Note from the figure that two SHARC®
compute nodes are used for I/O and eight PowerPC® are used to actually perform the

23

STAP computations (for the particular instance of STAP considered). Unlike SAR, where
CNs are dedicated exclusively to one particular phase of the computation, in the STAP
implementation all CNs work on all three phases of computation. Figure 19 illustrates the
three phases of computation required by STAP and the two communication phases (i.e.,
re-partitioning of the data cube) between the three phases. A space-time diagram is
provided in Figure 20 followed by a summary of obtained throughput results in Figure
21. As was the case for SAR, note from Figure 21 that the required input and output
throughputs realized for this particular study are well within the maximum capacity
supported by our custom interfaces.

Write_to_
RIN-T

Read_from
_Host

Wait

buffer_empty3buffer_full2

1 Suspend from the RIN-T
2 FPGA memory buffer is full
3 FPGA memory buffer is empty

suspend1

Init

Communication from Annapolis FPGA (F) to Mercury
Interface Design

Init RIN-T

Wait_for_
data

Determine_
Dest_CN Send_Data

not_empty

Create_DX_
transfer

complete

Annapolis FPGA Subsystem (F)
Mercury Subsystem

32 Data*

Strobe

Valid

Suspend

suspend1

*Peak throughput achieved to date: (15 MHz) × (4 Bytes) = 60 Mbytes/sec
Figure 10. Interface Design: Communication from Annapolis FPGA (F) to Mercury.

24

Read_from_
ROUT-T

Write_to_
Host

Wait

buffer_empty2 buffer_full3

valid1 valid1

Init

1 Valid output from the ROUT-T
2 FPGA memory buffer is empty
3 FPGA memory buffer is full

Annapolis FPGA Subsystem (B)

32 Data*

Strobe

Valid

Suspend

Mercury Subsystem

Init ROUT-T

Wait_for_
data

Pack_Data

Create_DX_
transfer

data_ready

Replicate_
Data

Send_Data
_to_ROUT-T

Communication from Mercury to Annapolis FPGA (B)
Interface Design

*Peak effective throughput: (33 MHz)×(4 Bytes)×(1/4)×(30/32)=31 Mbytes/sec
replication factor packing factor

Figure 11. Interface Design: Communication from Mercury to Annapolis FPGA (B).

Range
Compression

(F)

Azimuth
Processing

(B)

Figure 12. Illustration of how the major computational components of SAR processing
can be mapped onto the hybrid system.

25

Range
Compression

Doppler
Filtering

Weight
Computation

(F) (B)

Figure 13. Illustration of how the major computational components of STAP processing
can be mapped onto the hybrid system.

Pulse Compression
Fix-to-
Float

Input Data

Digital I/Q
(real-to-

complex)

Pulse return
N range cells

Range-Compressed
Pulse return
N range cells

Magnitude
Azm. Compression
-Fast Convolution

(sectioned)

Output Image Buffer

N Range cells

K

Corner-Turning
Double-Buffer

N Range cells

N=2048

K: Pulse Number =512

SAR Processing Flow*

*Figure Derived from:T. Einstein, “Realtime Synthetic Aperture Radar Processing on the
RACE Multicomputer,” App. Note 203.0, Mercury Computing Sys, 1996.

Figure 14. Figure 14. SAR Processing Flow.

26

2048153610245121CN 2 Input Buffer

512

1

1, 2, ……, …… 2048
(2048 range gates)

Input
(Odd Pulses From

SHARC CN 1) CN2
Range Processing

CN2 DMA CN3 DMA

CN5 Input Buffer

CN 5
Corner Turn

CN 4
Double-Buffered Memory

(512 * 1024 double
complex data)

1

CN2 DMA CN3 DMA

CN4 Input Buffer

CN 4
Corner Turn

CN2 DMA CN3 DMA

CN6 Input Buffer

CN 6
Corner Turn

CN2 DMA CN3 DMA

CN7 Input Buffer

CN 7
Corner Turn

CN 4
Azimuth Processing

CN 4 Output Buffer CN 8 (SHARC)
Output Image Buffer

CN 4 DMA

CN 5 DMA

CN 6 DMA

CN 7 DMA
1024

4 * 512
* 512

Data Distribution for Parallel SAR Processing on Mercury
Using 6 PPC CNs for Processing and 2 SHARC CNs for I/O

CN 2 Output Buffer

Figure 15. Data distribution for Parallel SAR Processing on Mercury.

27

Space-Time Diagram for Streaming Parallel SAR Processing
Using 6 PPC CNs for Processing and 2 SHARC CNs for I/O

. . . (2048 range gates). . . (2048 range gates)

. . .
(512 pulses)

. . . (512 range gates)

. . . (512 range gates)

. . . (512 range gates)

. . . (512 range gates)

. . .
(512 pulses)

. . .
(512 pulses)

. . .
(256 pulses)

. . .
(256 pulses)

. . .
(256 pulses)

. . .
(256 Pulses)

. . .
(256 Pulses)

. . .
(256 Pulses)

t=0

CN8
(output)

CN7

CN6

CN5

CN4

CN3

CN2

CN1
(input)

odd pulses comm. timeeven pulses

. . . (512 range gates) . . . (512 range gates)

. . . (512 range gates) . . . (512 range gates)

idle time

t=16.8st=11.2st=5.6s

Figure 16. Space-time diagram for streaming parallel SAR processing.

28

CN1 CN2

CN3

CN5

CN6

CN8

CN7

CN4

Input
Data

Output
Data

Streaming Parallel SAR Processing Throughput Requirements
Using 6 PPC CNs for Processing and 2 SHARC CNs for I/O

Range
Processor

Azimuth
Processor

5.6 sec 5.6 sec

Input Data Size = 512 × 2 × 2032 × 2
= 4 MBytes

Input Throughput = 4 MBytes/5.6 sec
= 0.71 MBytes/sec

Output Data Size = 512 × 2048 × 2 × 4
= 8 Mbytes

Out Throughput = 8 MBytes/5.6 sec
= 1.42 MBytes/sec

Figure 17. Throughput requirements achieved for streaming parallel SAR processing.

29

Processing CNs
(PowerPCs)

2 – 4K×18
FIFOs

ROUT

Output Manager
(SHARC)

CN SMB
(data)

sync

2 – 4K×18
FIFOs

RINT

Input Manager
(SHARC)

CN SMB
(data)

sync

SMB
(data)

sync
CN1

SMB
(data)

sync
CN2

SMB
(data)

sync
CN8

SMB
(data)

sync
CN7

Streaming Parallel RT_STAP on Mercury Subsystem

D
is

tri
bu

te
 In

pu
t D

at
a

C
ub

e

G
at

he
r O

ut
pu

t
D

at
a

M
at

rix

Figure 18. Streaming parallel RT_STAP on Mercury Subsystem.

30

Pulse Compress
(range dimension whole)

Doppler Filter
(pulse dimension whole)

QR Decomposition
(channel-range seq.

planes whole)

Re-Partition
Data Cube

Re-Partition
Data Cube

.

.

.

CN1

CN2

CN7

CN8

CN1

CN2

CN7

CN8

CN1

CN2

CN7

CN8

.

.

.

.

.

.

In
pu

t D
at

a
C

ub
e

O
ut

pu
t D

at
a

M
at

rix

Parallel RT_STAP on Mercury Subsystem*

*Figure Derived from:M. Skalabrin and T. Einstein, “STAP Processing on Multiprocessor Systems: Distribution of
3-D Data Sets and Processor Allocation for Efficient Interprocessor Communication,” ASAP Workshop, Mar. 1996.

Figure 19. Parallel RT_STAP on Mercury Subsystem.

31

Space-Time Diagram for Parallel RT_STAP
Using 8 PPC CNs for Processing and 2 SHARC CNs for I/O

CN4

CN7

CN8

CN2

CN5

CN6

SHARC
(Output)

CN1

CN3

Input Data Cube 1

SHARC
(Input)

comm. time idle time
t=0 t=4s T=4.5s

Output Data Matrix

Input Data Cube 2

Figure 20. Space-time diagram for parallel RT_STAP.

32

RT_STAP Data Cube

C
ha

nn
el

s
(1

6)

Pulse
s (

64
)

Samples (1920)

STAP

D
op

pl
er

s
(6

4)

Ranges (480)

Output Complex
Data Matrix

23 msecGather Output Data

4 secDistribute Input Data

4.5 secTotal Time

99.36 msecQR Decomposition
112.48 msecSecond Rotation
25.32 msecDoppler Filter
21.18 msecFirst Rotation
299.48 msecPulse Compress

TimeFunction

Input Data Size = 16 × 64 × 1920 × 2 = 4 MBytes
Output Data Size = 64 × 480 × 8 = 0.25 MBytes

Input Throughput = 4 Mbytes/4.5 sec
= 0.89 Mbytes/sec

Output Throughput = 0.25 Mbytes/4.5 sec
= 0.056 Mbytes/sec

Throughput Requirements for Medium Case Parallel RT_STAP
Using 8 PPC CNs for Processing and 2 SHARC CNs for I/O

Figure 21. Throughput requirements achieved for the medium case parallel RT_STAP.

33

Conclusion

Technology Transfer

Technology transfer took place along five main paths: (1) the DARPA Adapted
Computing Systems (ACS) community through PI (Principal Investigator) meetings and
other conferences (plus communications with PIs and program managers in related
areas); (2) the employees and technical support contacts at Mercury Computer Systems,
Inc.; (3) the employees and technical support contacts at Annapolis Micro Systems, Inc.;
(4) contacts with various defense contractors such as Northrop Grumman; and (5) the
academic high-performance embedded computing research community.

Regarding path (1), we worked with DARPA and other PIs associated with related
projects to ensure efficient transfer of information and technology. We attended all PI
meetings and helped support DARPA in presenting the results of this effort for further
program funding.

For paths (2) and (3), we consulted with the vendors on a regular basis, especially
during the period of time in which the prototype system was being constructed. We kept
both vendors informed on the current status of the prototype throughout the project. The
success of our project sparked interaction between the two vendors in terms of defining
and refining interface standards for interconnecting their products. These new standards,
which were not available at the time we were constructing our prototype, make it much
easier to construct an FPGA/DSP/GPP system such as the one implemented for this
project.

The transfer along path (4) was important because it enabled our proposed approaches
to be considered and evaluated by defense systems designers and end-users. Also, staying
in close contact with major defense contractors and other contractors that were part of the
ACS program, ensured that the approaches and systems we developed were realistic.

As indicated by path (5), it was important to keep the academic research community
informed about our developments. The publications that resulted from this project have
made an impact and serve to illustrate the types of research of interest to DARPA. It also
illustrated that there is an abundance of basic, fundamental research to be done on the
way to solving important problems of military interest.

Deliverables

This project delivered an abundance of results of both practical and theoretical
importance. Many of these results have been published as journal and conference papers,
and copies of these papers are provided in the appendices of this report. Online links to
delivered publications, presentation materials, dissertations, theses, and additional
materials are provided in the References and Additional Materials sections of the report.
Associated with each publication is one or more tool or technique of immediate practical
importance to practitioners in the area of embedded high-performance systems design
and implementation. Also delivered was a prototype platform in which the three
technologies of interest (FPGA, DSP, and GPP) were integrated into a single high-
performance computational engine. This platform served as a test bed in which

34

experimental tests, evaluations, and assessments associated with the research were
conducted.

The theme of the project was to focus on techniques and systems for minimizing
power consumption requirements for two particular radar-processing applications. In
addition to providing results along these lines, many of the techniques and results
delivered are applicable to a much broader set of problems that arise in high-
performance, SWAP-constrained embedded systems.

35

References

[1A] Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of an
Embedded Parallel System for Synthetic Aperture Radar Processing,”
Proceedings of the International Conference on Signal Processing Applications
& Technology, Boston, MA, Oct. 1996, pp. 1489-1494.

 Location: Appendix A and http://www.cs.ou.edu/~antonio/pubs/conf033.pdf

 [2B] Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of Compute
Nodes for Synthetic Aperture Radar Processing,” Proceedings of the
International Workshop on Embedded HPC Systems and Applications (EHPC
‘98), in Lecture Notes in Computer Science 1388: Parallel and Distributed
Processing, edited by Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL,
USA, Apr. 1998, pp. 987-993.

 Location: Appendix B and http://www.cs.ou.edu/~antonio/pubs/conf035.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf035.pdf

[3] Jeffrey T. Muehring, Optimal Configuration of a Parallel Embedded System for
Synthetic Aperture Radar Processing, Master’s Thesis, Department of Computer
Science, Texas Tech University, Lubbock, TX, Dec. 1997.

 Location: http://www.cs.ou.edu/~antonio/pubs/muehring_thesis.pdf

[4C] Jack M. West and John K. Antonio, “Simulation of the Communication Time for
a Space-Time Adaptive Processing Algorithm on a Parallel Embedded System,”
Proceedings of the International Workshop on Embedded HPC Systems and
Applications (EHPC ‘98), in Lecture Notes in Computer Science 1388: Parallel
and Distributed Processing, edited by Jose Rolim, sponsor: IEEE Computer
Society, Orlando, FL, USA, Apr. 1998, pp. 979-986.

 Location: Appendix C and http://www.cs.ou.edu/~antonio/pubs/conf036.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf036.pdf

[5D] Jack M. West and John K. Antonio, “A Genetic Algorithm Approach to
Scheduling Communications for a Class of Parallel Space-Time Adaptive
Processing Algorithms,” Proceedings of the 5th International Workshop on
Embedded/Distributed HPC Systems and Applications (EHPC 2000), in Lecture
Notes in Computer Science, IPDPS 2000 Workshops, sponsor: IEEE Computer
Society, Cancun, Mexico, May 2000, pp. 855-861.

 Location: Appendix D and http://www.cs.ou.edu/~antonio/pubs/conf042.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf042.pdf

[6E] Jack M. West and John K. Antonio, “A Genetic-Algorithm Approach to
Scheduling Communications for Embedded Parallel Space-Time Adaptive
Processing Algorithms,” Journal of Parallel and Distributed Computing, Vol. 62,
No. 9, Sept. 2002, pp. 1386-1406.
Location: Appendix E and http://www.cs.ou.edu/~antonio/pubs/jour016.pdf

36

[7] Jack M. West, Simulation of Communication Time for a Space-Time Adaptive
Processing Algorithm on a Parallel Embedded System, Master’s Thesis,
Department of Computer Science, Texas Tech University, Lubbock, TX, Aug.
1998.

 Location: http://www.cs.ou.edu/~antonio/pubs/west_thesis.pdf

[8] Jack M. West, Processor Allocation, Message Scheduling, and Algorithm
Selection for Space-Time Adaptive Processing, Doctoral Dissertation, Department
of Computer Science, Texas Tech University, Lubbock, TX, Aug. 2000.

 Location: http://www.cs.ou.edu/~antonio/pubs/west_diss.pdf

[9F] Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West, Hongping
Li, Sirirut Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K.
Dhall, “A Probabilistic Power Prediction Tool for the Xilinx 4000-Series FPGA,”
Proceedings of the 5th International Workshop on Embedded/Distributed HPC
Systems and Applications (EHPC 2000), in Lecture Notes in Computer Science,
IPDPS 2000 Workshops, sponsor: IEEE Computer Society, Cancun, Mexico, May
2000, pp. 776-783.

 Location Appendix F and http://www.cs.ou.edu/~antonio/pubs/conf041.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf041.pdf

[10] Timothy A. Osmulski, Implementation and Evaluation of a Power Prediction
Model for a Field Programmable Gate Array, Master’s Thesis, Department of
Computer Science, Texas Tech University, Lubbock, TX, May 1998.

 Location: http://www.cs.ou.edu/~antonio/pubs/osmulski_thesis.pdf

[11G] Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise Power
Prediction for Combinational Circuits,” Proceedings of the IEEE Symposium on
VLSI, sponsor: IEEE, Tampa, FL, Feb 2003, pp. 254-259.

 Location Appendix G and http://www.cs.ou.edu/~antonio/pubs/conf046.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf046.pdf

[12H] Nikhil D. Gupta, John K. Antonio, and Jack M. West, “Reconfigurable
Computing for Space-Time Adaptive Processing” Proceedings of the Sixth
Annual IEEE Symposium on Field Programmable Custom Computing Machines
(FCCM), Napa, CA, USA, Apr. 1998, pp. 335-336.

 Location: Appendix H and http://www.cs.ou.edu/~antonio/pubs/conf037.pdf

[13] Nikhil D. Gupta, Reconfigurable Computing for Space-Time Adaptive Processing,
Master’s Thesis, Department of Computer Science, Texas Tech University,
Lubbock, TX, August 1998.

 Location: http://www.cs.ou.edu/~antonio/pubs/gupta_thesis.pdf

[14] Brian F. Veale, Study of Power Consumption For High-Performance
Reconfigurable Computing Architectures, Master’s Thesis, Department of
Computer Science, Texas Tech University, Lubbock, TX, August 1999.

 Location: http://www.cs.ou.edu/~antonio/pubs/veale_thesis.pdf

37

 [15I] Jeffrey T. Muehring and John K. Antonio, “Minimizing Power Consumption
using Signal Activity Transformations for Very Deep FPGA Pipelines,”
Proceedings of the Military and Aerospace Applications for Programmable
Devices and Technologies Conference (MAPLD 2000), sponsors: NASA and
Johns Hopkins University/Applied Physics Laboratory, Laurel, MD, Sep. 2000.

 Location Appendix I and http://www.cs.ou.edu/~antonio/pubs/conf044.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf044.pdf

[16J] S. Vanichayobon, Sudarshan K. Dhall, S. Lakshmivarahan, and John K. Antonio,
“Power-speed Trade-off in Parallel Prefix Circuits,” Proceedings of ITComm
2002, High-Performance Pervasive Computing Conference, sponsor: SPIE,
Boston, MA, July/Aug. 2002, pp. 109-120.

 Location Appendix J and http://www.cs.ou.edu/~antonio/pubs/conf045.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf045.pdf

[17] Sirirut Vanichayobon, Power-Speed Trade-Off in Parallel Prefix Circuits,
Doctoral Dissertation, School of Computer Science, University of Oklahoma,
Norman, OK, 2002.

 Location: http://www.cs.ou.edu/~antonio/pubs/sirirut_diss.pdf

[18K] Jack M. West, Hongping Li, Sirirut Vanichayobon, Jeffrey T. Muehring, John K.
Antonio, and Sudarshan K. Dhall, “A Hybrid FPGA/DSP/GPP Prototype
Architecture for SAR and STAP,” Proceedings of the Fourth Annual High
Performance Embedded Computing Workshop, sponsors: U.S. Navy and Defense
Advanced Research Projects Agency (DARPA), MIT Lincoln Laboratory
Publications, Group 18, Lexington, MA, Sep. 2000, pp. 29-30.

 Location: Appendix K and http://www.cs.ou.edu/~antonio/pubs/conf043.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf043.pdf

38

Additional Materials

Annual Reviews and Kickoff Presented to DARPA

Fall 1999 Annual Review: http://www.cs.ou.edu/~antonio/pubs/p-ann_rev99acs.pdf
Fall 1998 Annual Review: http://www.cs.ou.edu/~antonio/pubs/p-ann_rev98acs.pdf
Fall 1997 Kickoff: http://www.cs.ou.edu/~antonio/pubs/p-kickoff97acs.pdf

PI Meeting Presentations and Posters

Presentation, Spring 2000 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/p-
sp00acs.pdf
Poster, Spring 2000 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-sp00acs.ppt

Presentation, Fall 1999 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/p-fall99acs.pdf
Poster, Fall 1999 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-fall99acs.ppt

Poster, Spring 1999 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-sp99acs.ppt

Poster, Fall 1998 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-fall98acs.ppt

Poster 1, Spring 1998 PI Meeting:
http://www.cs.ou.edu/~antonio/pubs/poster1-sp98acs.ppt

Poster 2, Spring 1998 PI Meeting:
http://www.cs.ou.edu/~antonio/pubs/poster2-sp98acs.ppt

Presentation, Fall 1997 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/p-fall97acs.pdf
Poster, Fall 1997 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-fall97acs.pdf

Technical Report

Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise Power
Prediction for Combinational Circuits,” University of Oklahoma, School of Computer
Science, Technical Report No. CS-TR-02-001, Nov. 2002, 42 pages.
http://www.cs.ou.edu/~antonio/pubs/tr013.pdf (expanded content of [11G]).

39

List of Acronyms

ACS Adaptive Computing Systems
ASIC application specific integrated circuit
CE compute element
CLB configurable logic block
CN compute node
COTS commercial off the shelf
DARPA Defense Advanced Research Projects Agency
DSP digital signal processor
FLOP floating-point operation
FPGA field programmable gate array
GA genetic algorithm
GPP general-purpose processor
IEEE Institute of Electrical and Electronics Engineers
MIT Massachusetts Institute of Technology
PC personal computer
PCI peripheral component interconnection
PI principal investigator
RASSP rapid prototyping of application specific signal processors
RT_STAP real-time space-time adaptive processing
SAR synthetic aperture radar
SHARC® “super” Harvard architecture
STAP space-time adaptive processing
SWAP size, weight, and power
UAV unmanned aerial vehicle

40

Appendix A: Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of an
Embedded Parallel System for Synthetic Aperture Radar Processing,” Proceedings of the
International Conference on Signal Processing Applications & Technology, Boston, MA,
Oct. 1996, pp. 1489-1494.

41

42

43

44

45

46

47

Appendix B: Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of
Compute Nodes for Synthetic Aperture Radar Processing,” Proceedings of the
International Workshop on Embedded HPC Systems and Applications (EHPC ‘98), in
Lecture Notes in Computer Science 1388: Parallel and Distributed Processing, edited by
Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL, USA, Apr. 1998, pp. 987-
993.

48

49

50

51

52

53

54

55

Appendix C: Jack M. West and John K. Antonio, “Simulation of the Communication
Time for a Space-Time Adaptive Processing Algorithm on a Parallel Embedded System,”
Proceedings of the International Workshop on Embedded HPC Systems and Applications
(EHPC ‘98), in Lecture Notes in Computer Science 1388: Parallel and Distributed
Processing, edited by Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL, USA,
Apr. 1998, pp. 979-986.

56

57

58

59

60

61

62

63

64

Appendix D: Jack M. West and John K. Antonio, “A Genetic Algorithm Approach to
Scheduling Communications for a Class of Parallel Space-Time Adaptive Processing
Algorithms,” Proceedings of the 5th International Workshop on Embedded/Distributed
HPC Systems and Applications (EHPC 2000), in Lecture Notes in Computer Science,
IPDPS 2000 Workshops, sponsor: IEEE Computer Society, Cancun, Mexico, May 2000,
pp. 855-861.

65

66

67

68

69

70

71

72

Appendix E: Jack M. West and John K. Antonio, “A Genetic-Algorithm Approach to
Scheduling Communications for Embedded Parallel Space-Time Adaptive Processing
Algorithms,” Journal of Parallel and Distributed Computing, Vol. 62, No. 9, Sept. 2002,
pp. 1386-1406.

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

Appendix F: Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West,
Hongping Li, Sirirut Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K.
Dhall, “A Probabilistic Power Prediction Tool for the Xilinx 4000-Series FPGA,”
Proceedings of the 5th International Workshop on Embedded/Distributed HPC Systems
and Applications (EHPC 2000), in Lecture Notes in Computer Science, IPDPS 2000
Workshops, sponsor: IEEE Computer Society, Cancun, Mexico, May 2000, pp. 776-783.

95

96

97

98

99

100

101

102

103

Appendix G: Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise
Power Prediction for Combinational Circuits,” Proceedings of the IEEE Symposium on
VLSI, sponsor: IEEE, Tampa, FL, Feb 2003, pp. 254-259.

104

105

106

107

108

109

110

Appendix H: Nikhil D. Gupta, John K. Antonio, and Jack M. West, “Reconfigurable
Computing for Space-Time Adaptive Processing” Proceedings of the Sixth Annual IEEE
Symposium on Field Programmable Custom Computing Machines (FCCM), Napa, CA,
USA, Apr. 1998, pp. 335-336.

111

112

113

Appendix I: Jeffrey T. Muehring and John K. Antonio, “Minimizing Power
Consumption using Signal Activity Transformations for Very Deep FPGA Pipelines,”
Proceedings of the Military and Aerospace Applications for Programmable Devices and
Technologies Conference (MAPLD 2000), sponsors: NASA and Johns Hopkins
University/Applied Physics Laboratory, Laurel, MD, Sep. 2000.

114

115

116

117

Appendix J: S. Vanichayobon, Sudarshan K. Dhall, S. Lakshmivarahan, and John K.
Antonio, “Power-speed Trade-off in Parallel Prefix Circuits,” Proceedings of ITComm
2002, High-Performance Pervasive Computing Conference, sponsor: SPIE, Boston, MA,
July/Aug. 2002, pp. 109-120.

118

119

120

121

122

123

124

125

126

127

128

129

130

Appendix K: Jack M. West, Hongping Li, Sirirut Vanichayobon, Jeffrey T. Muehring,
John K. Antonio, and Sudarshan K. Dhall, “A Hybrid FPGA/DSP/GPP Prototype
Architecture for SAR and STAP,” Proceedings of the Fourth Annual High Performance
Embedded Computing Workshop, sponsors: U.S. Navy and Defense Advanced Research
Projects Agency (DARPA), MIT Lincoln Laboratory Publications, Group 18, Lexington,
MA, Sep. 2000, pp. 29-30.

131

132

133

